
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2424928

Design and Implementation of a User-interactive Parallel Programming

Environment

Article · February 1997

Source: CiteSeer

CITATIONS

2
READS

48

3 authors:

Some of the authors of this publication are also working on these related projects:

Intelligent sensing and mobile networking technologies and their applications View project

Tzung-Shi Chen

National University of Tainan

111 PUBLICATIONS 1,951 CITATIONS

SEE PROFILE

Kuei-Ping Shih

Tamkang University

115 PUBLICATIONS 1,416 CITATIONS

SEE PROFILE

Jang-Ping Sheu

National Tsing Hua University

278 PUBLICATIONS 13,544 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jang-Ping Sheu on 14 January 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2424928_Design_and_Implementation_of_a_User-interactive_Parallel_Programming_Environment?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2424928_Design_and_Implementation_of_a_User-interactive_Parallel_Programming_Environment?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Intelligent-sensing-and-mobile-networking-technologies-and-their-applications?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tzung-Shi-Chen?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tzung-Shi-Chen?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-University-of-Tainan?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tzung-Shi-Chen?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kuei-Ping-Shih?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kuei-Ping-Shih?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tamkang-University?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kuei-Ping-Shih?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jang-Ping-Sheu?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jang-Ping-Sheu?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-Tsing-Hua-University?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jang-Ping-Sheu?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jang-Ping-Sheu?enrichId=rgreq-472ccf8d624744e17b80b5d2bda2e440-XXX&enrichSource=Y292ZXJQYWdlOzI0MjQ5Mjg7QVM6OTg1MjQ3NzU1ODM3NDhAMTQwMDUwMTU0NTc1Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Design and Implementation of a User-interactiveParallel Programming EnvironmentTzung-Shi Chen, Kuei-Ping Shih, and Jang-Ping Sheu1Department of Computer Science and Information EngineeringNational Central University, Chung-Li, Taiwansheujp@csie.ncu.edu.tw

1To whom all correspondence should be addressed.

AbstractA state-of-the-art parallel programming environment called UPPER (User-interactiveParallel Programming EnviRonment) is presented in this paper. Parallel machines whichexecute programs concurrently on hundreds or thousands of processors provide far morecomputational power than does a uniprocessor. However, designing parallel programs onparallel machines manually is very di�cult and error-prone. Due to these problems, manytools which help programmers translate sequential programs into parallelized programs oreven help them design parallel programs have been developed. The proposed environmentalso has the same purpose. The major components of this environment include a paralleliz-ing compiler system and simulators of the given target machines. The parallelizing compilersystem introduces new and existing techniques for compiler-time analysis, and the simula-tor can simulate execution of the translated parallelized program on the target machine andshow the simulated performance reports. This integrated environment attempts to provideconvenience for users or programmers who can easily design or write their desirable parallelprograms based on a variety of assertions and information generated by this environment.Using our environment, programmers can avoid the necessity of designing parallel programsand can obtain e�cient parallelized programs from sequential programs easily.Keywords: Distributed memory multicomputers, interprocessor communication, parallelprogramming, parallelizing compilers, shared memory multiprocessors, simulators.I. IntroductionParallel processing is the most promising approach to designing and establishing high-performance computers. Parallel computers with hundreds of moderate-sized processors orthousands of simple processors are commercially available and are being used to solve variouspractical problems. The programming environment, a collection of software tools and systemsoftware, for parallel machines is more demanding than that for sequential machines. Thisis because engineers spend much time concentrating on designing the hardware of parallelcomputers instead of that on programming parallelism into programs running on parallelcomputers. To reduce the gap between hardware and software, we need a parallel program-ming environment which o�ers better tools for users to extract parallelism and to debugprograms. The most important goal of a programming environment is to design excellentcompilers with user-de�ned parallel constructs (parallel languages) or to develop parallelizingcompilers which automatically translate a sequential program into a parallel executable form.Therefore, several parallel programming environments, to be sure, have been designed andimplemented on a variety of parallel machines for the purpose of saving the e�ort involved indeveloping parallel programs. The Parafrase-II project (Polychronopoulos et al., 1989) wasone of the �rst attempts to design and implement a source to source multilingual restructur-ing compiler which supports the C and FORTRAN languages. It is portable, easy to extend,- 1 -

and powerful due to its compiling capabilities. The Parallel TRANslator, PTRAN, (Allenet al., 1988) is a research system used to develop technology for automatic exploitation ofparallelism. The Tiny research tool (Wolfe, 1991), which provides several elementary trans-formations, allows a user to interactively restructure the loops in a program. The ParaScopeproject (Kennedy et al., 1991) develops an integrated collection of tools to assist scienti�cprogrammers in implementing correct and e�cient parallel programs. This environment canbuild dependences, provide expert advice, and perform complex transformations (Padua andWolfe, 1986) (Wolfe, 1989) while the programmer determines which dependences are validand chooses those transformations to be applied.SUPERB is a semi-automatic parallelization system which includes SIMD and MIMD par-allelization for the SUPRENUM multiprocessor (Zima et al., 1988). This system is orientedtoward the parallelization of numerical programs which work in a mesh or mesh-like data do-main where the computations at the mesh points are local. Rogers and Pingali (Rogers andPingali, 1989) worked on compilation of the data ow language ID Nouveau for distributedmemory machines. They used a �xed domain decomposition method to assign data to pro-cessors and to automatically generate individual send and receive pairs for passing of datablocks among processors. The compiler of Fortran D (Hiranandani et al., 1992) is used tocompile a sequential program with speci�cation of data alignment and data distribution. Itsgoals are to provide a machine-independent programming model for data-parallel applicationsand to shift the burden of machine-dependent optimization to the compiler. As described in(Koelbel et al., 1990) and (Koelbel and Mehrotra, 1991), KALI is a system which compilesa functional language with a parallel construct into a language which includes constructsfor explicit process creation, data storage layout, and interprocessor communication. It isthe �rst compiler to support both regular and irregular computations on MIMD distributedmemory machines. However, KALI still leaves the tasks of parallelism extraction and datapartition to the programmer since it only removes the task of communication generationfrom the programmer. CRYSTAL (Li and Chen, 1991) is a high-level functional languagehaving a parallel construct compiled to distributed memory machines using both automaticdata decomposition and communication generation. This compiler tries to choose a datadecomposition so as to minimize the time spent on data communication. To achieve thisgoal, a part of the data layout will match the combination of the program reference patternand communication aggregates.Recently, the PARADIGM project (Gupta and Banerjee, 1992) (Su et al., 1993) hasdeveloped a fully automated technique for translating serial programs for e�cient executionon distributed memory multicomputers. In addition, the Stanford SUIF compiler system(Tjiang et al., 1992) (Wolf and Lam, 1991) derives data and computation decompositionautomatically for distributed memory machines. It solves the problem of global optimizationfor parallelism and data locality. It can also handle more exible data decompositions and �ndmore opportunities for communication optimization (Amarasinghe and Lam, 1993) (Andersonand Lam, 1993). - 2 -

The parallel programming environment called UPPER (User-interactive Parallel Pro-gramming EnviRonment) is another attempt in this area. To develop parallelized programs,it records a given sequential program's the data and control information and their relation-ships for users, and indicates the e�ectiveness of various program transformations throughthe user interface. Moreover, the programmer can give a few suggestions to enable the par-allelizing compiler to look for more parallelism in programs. This environment also providesconvenience for programmers who can easily design desirable parallel programs. It di�ersfrom the other interactive environments mentioned above in its new compilation techniques(Chen and Sheu, 1994) (Sheu and Chen, 1995) and simulators of parallel computers. For dif-ferent types of parallel machines, various program transformations have been deeply studiedand designed (Chu, 1993) (Ni, 1993). Based on the execution performance as analyzed bysimulators, programmers can decide whether to leave the parallelized codes as the �nal resultor to apply di�erent parallelizing techniques to the programs.The rest of this paper is organized as follows. An overview of UPPER is briey given inSection 2. In Section 3, we present the detailed implementation as well as the user interfaceresponsible for interaction and exhibition of various modules and graphics. The machine-independent phase which deals with the preprocessing of a source program, dependence anal-ysis, and our proposed compilation strategies, which have appeared in (Chen and Sheu, 1994)(Sheu and Chen, 1995), is presented in Section 4. Section 5 states the implementation issuesof the machine-dependent phase of the parallelizing compiler. During the machine-dependentphase, we handle mapping and scheduling of a transformed program onto target machinesspeci�ed by users. In section 6, we describe the simulators of shared memory multiproces-sors and distributed memory multicomputers in which the resulting parallelized codes aresimulated and analyzed. We �nally give conclusions in Section 7.II. An Overview of UPPERIn this section, an overview of our parallel programming environment, UPPER, is pre-sented. The whole integrated system has been implemented and designed on DEC work-stations with the MOTIF environment. The interactive programming environment providesusers with all of the information which is available to the automatic environment. Accordingto the procedure for compiling a sequential program into a parallelized code, the descriptionof each module in this environment and relations among the modules are briey stated asfollows.The main con�guration of the parallel programming environment is shown in Figure 1.The ow of control and data among the modules are represented by solid and dashed lines,respectively. In the remaining sections, we will only focus on descriptions of a parallelizingcompiler for multicomputers, excluding the vector compiler enclosed in the dashed line inFigure 1. The major components of this environment include a parallelizing compiler sys-tem and simulators of given target machines. The parallelizing compiler system consists of- 3 -

two phases: a machine-independent phase and a machine-dependent phase. The machine-independent phase, including the preprocessing, dependence analysis, and program transfor-mation modules, exploits the parallelism of a given sequential program, regardless of machinetopologies and properties. The next phase, the machine-dependent phase, including the datadistribution and program scheduling, and code generation modules, uses the input data andinformation generated by the �rst phase to produce the parallel execution code according tomachine topologies, size, and architectures. In addition, the database module is designed forall of the data and information generated or accessed by each module.In this environment, the tasks of the user interface module are communication and in-teraction between the environment and users. The user interface can be made not only toeasily use this environment such as by editing a sequential or parallel program, by showingthe dependence information and the output results, etc., but also to interactively modifyor restructure the sequential program into a parallelized or vectorized form so that betterexecution code performance can be obtained.The preprocessingmodule with input from the sequential program and the target machineis used to scan, parse, and construct the program representation and the information on dataow for later use. The language used is FORTRAN. Currently, only its subset has beenconsidered for implementing this environment since this parallelizing compiler is a researchtool. The grammars which we have considered are shown in Appendix A. The structure ofthe procedures and function calls and complex constructions will be incorporated into thisparallelizing compiler in the future. The major tools used here for scanning and parsing of agiven program are lex and yacc, respectively.After preprocessing, some information is created for use by the dependence analysis mod-ule. The control ow of a program is represented by a tree structure, which is referred as theprogram representation (Ferrante et al., 1987). A basic block in the program is identi�ed as abasic structure in the corresponding program representation in order to clearly distinguish thecontrol ow and to easily manipulate this tree structure. For each statement in the sequentialprogram, its representation with one or several complex expressions is also incorporated intothe program representation. Based on this representation, information about analyzed datadependence is also appended and is reported to users in a graphic manner. The data depen-dence information is used to guide subsequent compiler analysis and optimization such asby reporting bottlenecks in the program parallelization and opportunities for exploiting theparallelism of program. The popular and well-known methods of data dependence testing,including the GCD test and Banerjee-Wolfe test (Banerjee, 1988) (Wolfe and Banerjee, 1987)(Wolfe, 1992), have been implemented in this system. Several more powerful methods of datadependence testing such as the � test (Li et al., 1990), power test (Wolfe and Tseng, 1992),and omega test (Pugh, 1992) will be studied and implemented in the future.The program transformation module contains the submodules of program parallelization,data parallelization, data and program parallelization, and program vectorization. This moduleutilizes the results of dependence analysis to improve program performance and to transform- 4 -

the sequential program, based on the analyzed information about data dependence, intoits corresponding parallelized or vectorized form. The transformation techniques can beincorporated into the program transformation module.After program transformation, the transformed program is mapped and scheduled ontothe given target machine using the data distribution and program scheduling module. Thespeci�cations of the target machine contain the topology, the number of processors, thestartup time of message transmission, bu�er size, the status of links, and so forth, of dis-tributed memory multicomputers, shared memory multiprocessors, or supercomputers.After the data distribution and program scheduling module process, the intermediatecode and the parallelized or vectorized code are produced for di�erent machines in the codegenerationmodule. The intermediate code is simulated in the simulator of the target machinemodule. The simulator plays two important roles here. First, the simulator evaluates theparallelized or vectorized code and monitor the target machine. It may be di�cult to carryout program parallelizing and optimizing without evaluating the performance of the compiledcode. Thus, the parallelizing compiler system performs parallelization based on evaluation ofthe compiled codes running on the target machine. Second, the simulator is a testbed for thedevelopment of this environment and a research tool for parallelizing techniques. The outputof simulators includes the behavior records of each processor and statistical results. Basedon the output results generated by the simulator of the target machine module, users can inadvance predict whether the transformed program on the target machine can produce betterperformance or not. If the execution performance occurred from the transformed program ispoor, users can interactively turn on the other transformation techniques and apply them tothe original sequential program so that better execution performance can be generated.For all information generated or accessed by modules, designing and implementing thedatabase module is desirable for this environment and programmers. This information anddata are stored in the main memory or on disk. In the main memory, there exist a symbol ta-ble, program representation, internal information about data dependence, loop restructuringinformation, and so on. On disk, there exist the source sequential program, parallelized orvectorized program, intermediate code, reported information about data dependence, simu-lation results, statistical results obtained after simulating the transformed program, a targetmachine description, and so on.More detailed implementations and their corresponding complex data structures will beintroduced in later sections for the parallelizing compiler on UPPER. In the next section,we will �rst describe the design techniques and various modules of the machine-independentphase of our parallelizing compiler.III. User InterfaceIn this section, we will describe the user-interface module, the bridge which enables users tocommunicate with this environment. By means of the user interface, users can easily edit and- 5 -

compile the sequential source program. Furthermore, several graphs and tables derived fromthe analyzed results such as the program construction, the dependency relationship betweendata and control, execution performance evaluation after simulation of parallel programs,and so on, can be viewed by users. A snapshot of this environment is shown in Figure 2.The main menu bar of this environment has six selection items: File, View, Compile,Simulate, Options, andHelp. All the functions of this environment which have hierarchicalstructure are listed in Figure 3. For each function, some speci�cations are also depicted inFigure 3.The File selection item supports the functions of Open, Editor, and Exit. At any time,users can open a �le to be compiled by using the Open function key. When the Exit functionkey is chosen, all of the jobs stop, and the system halts. The environment also support aneditor which can be used to edit a program and can be selected by using the Editor functionkey.Within the View function, a data dependence graph can be shown by selecting thedependence graph selection subfunction. We can partition the sequential program into severalsegments by relating a nested loop to a segment of the program. Each program segmenthas its own data dependence graph. A snapshot of a data dependence graph is shown inFigure 4. The main window, titled the Data Dependence Viewer, is in the top-left cornerof Figure 4. Each node of the graph represents a statement in a program segment. Thearc between two nodes stands for the data dependence relationship. The number on thearc is the number of data dependences between two statements. In the menu bar, we canchoose Next (Previous) to show the data dependence graph related to the next (previous)program segment or choose Exit to quit. The window titled Information for Data DependenceGraph is shown in the bottom-left corner. The dependence relations in the left hand tableinclude forward data dependences. The dependence relations in the right hand table includebackward data dependences. In each row of the table with �ve entries, there are numbersof data dependences associated with some arc. The �rst entry indicates the arc number.The last four entries indicate the number of true (ow) dependences, antidependences, inputdependences, and output dependences, respectively. The window titled Source Code on theright-hand side shows the corresponding program segment and displays the line numbers onthe leftside. The data dependence information is depicted in a table below the source code.Each row with four entries indicates a data dependence relation between two statementswhose line numbers are the �rst two entries. That is, a statement with the second linenumber is data dependent on the statement with the �rst line number. The third entry is thevariable name, and the last entry indicates the dependence vector or the dependence distance.For example, consider arc 1 shown in Figure 4. From the window titled Information for DataDependence Graph, we know that there is a true dependence from the 26-th line to the 27-thline. From the data dependence information, we know that the 27-th line is true dependenton the 26-th line at the variable VA and that its dependence distance is (0; 1;�2).When setting the machine environment and compilation techniques, the user can select- 6 -

Compile to compile the program. At the same time, the parallelized code will be shownbeside the sequential code. The user can learn how the sequential code will be translatedinto parallelized code by comparing the parallelized code with the sequential code.By Simulate selection item, the user can simulate execution of the parallelized code andsimulation results can be displayed in the mean while. According to the various types ofmachine environments, the simulator will show di�erent simulation results. For example, thesimulation results for shared memory multiprocessors are shown in Figure 5 and those fordistributed memory multicomputers are shown in Figure 6. In the simulation results, eachnode represents a processing element. Each processing element can be in an idle, working, orcommunication state. We use di�erent colors to represent the state of the processing elementto to let the user easily recognize the state of the processing element. The user can use theDelay = 1 button to speed up or use the Delay = 10 button to slow down the simulation.Using the rerun function, the user can rerun the simulation.The Options selection item includes two subitems: Set Machine Environment and Com-pilation Techniques. After selecting a program, the user can set some aspects of the machineenvironment such as the topology of the target machine, the number of processors, and so onby choosing the Set Machine Environment subitem. In distributed memory multicomputers,the user can select Linear, Ring, Mesh, and Torus Mesh as the topology of the target ma-chine. The user can also select the Compilation Techniques subitem to choose the compilationtechniques. Presently, for distributed memory multicomputers, there exist three compilationtechniques: Communication-Free without Duplicate Data, Communication-Free with Dupli-cate Data, and Non-Communication-Free Transformation, which have been described in detailin (Chen and Sheu, 1994) (Sheu and Chen, 1995).The most important point is that the system supports a Help function. Within eachmenu, Help includes explanations of the selection items in the menu and can help the useruse the system. The user can get help immediately when it is needed. From the user's pointof view, this is the most friendly part of the environment.IV. Machine-Independent Phase of the Parallelizing CompilerIn this section, the machine-independent phase of our parallelizing compiler system isdescribed. The implementation issues and internal data structures are illustrated using thefollowing example.Example: Consider the following TEST program "test.f".PROGRAM TESTINTEGER I, JREAL A(10,10), B(10,10), C(10,10)DO 10 I = 2, 5DO 20 J = 2, 5 - 7 -

A(2�I,J) = C(I,J) � 7B(J,I+1) = A(2�I�2,J�1) + C(I�1,J�1)20 CONTINUE10 CONTINUEEND1. Preprocessing and Dependence AnalysisIn this subsection, the preprocessing and dependence analysis processes for a given se-quential program are discussed. We use lex and yacc, respectively, as tools to scan and parsethe sequential programs. After scanning and parsing the sequential program within the pre-processing module, the symbol table and its program representation are constructed for easymanipulation of subsequent modules.For each declared variable established in the symbol table, its symbol table entry hasthe following �elds. Declaration type is a ag to indicate that this variable is declared tobe either INTEGER or REAL. Variable name is a string to indicate the variable name.Dimension indicates the array dimension; if dimension is zero, this means that the variable isa scalar variable. Declaration bounds of arrays indicates the user-de�ned bounds of each arraydimension. For example, there are two scalar variables, I and J, with INTEGER type andthree two-dimensional array variables, A, B, and C, with REAL type in the TEST program.The ranges of these three array variables in each dimension are declared from 1 to 10.The program representation of a given program can not only preserve the meaning of theoriginal semantics but also indicate the control ow with DO and structured IF statements,assignment statements and operations, and the relationship between the program and symbolsalong with other information. There are three construction types of basic blocks within aprogram representation: IF statements, DO statements, and other statements (assignmentstatement, function call, and procedure call) whose graph constructions, regarded as IF nodes,DO nodes, and statement list nodes, are, respectively, shown in Figure 7(a), (b), and (c).To clearly demonstrate the concept of program representation, the following segmentationcode with complex structures is given. Its corresponding program representation is depictedin Figure 8.S1S2DO 10 I = L, UIF B THENS3ELSES4S5ENDIFS610 CONTINUES7 - 8 -

Within a given program, basic units consisting of the three basic blocks are assignmentstatements, procedure calls, and function calls. The basic units consisting of an assignmentstatement, a procedure call, or a function call are expressions. However, the smaller basicunits consisting of an expression are operators and operands. Detailed descriptions will begiven below. An assignment statement consists of two expression: the left one is a writeoperand, and the right one consists of several operands and operators. A procedure call orfunction call is composed of its name and several arguments and is also expressed by anexpression or a function call. An operand may be a scalar variable or an array variablecomposed of its array name and several subscripts, which are also expressed by an expressionor a function call. Hence the entire sequential program can be recursively constructed andrepresented by the three basic block constructions and the small constructions describedabove. The program representation of the TEST program is shown in Figure 9 based on theabove descriptions.After preprocessing an input program, each loop can be classi�ed into one of the fol-lowing four types. The ALLDOALL type indicates that there exists no dependence in thisloop. The UNIFORMLY NESTED type indicates a nested loop with uniformly generatedreferences (Gannon et al., 1988). The STAND NESTED type indicates a nested loop withconstant data dependence. Other loops are classi�ed in OTHERS. In the dependence anal-ysis module, applying the GCD test and Banerjee-Wolfe test produces the data dependenceinformation, including dependence or independence, the dependence type with input, output,ow dependence and antidependence, and the direction or distance vectors for each pair ofvariables. Within the dependence analysis module, the Banerjee-Wolfe test which extendsthe Banerjee's inequalities to �nd the dependence distance or direction vector (Wolfe, 1992)is also implemented when the loop limits are triangular, meaning that the limits of the innerloop depend on the outer loop indices. In addition, we also extend the work to manipulatemore complex non-perfect loops. Consider the TEST program again. There only exists onenested loop, identi�ed as the UNIFORMLY NESTED type. The data dependence informa-tion is generated in two �les with the �lenames "test.dep" and "test.var".The format of each line in a produced �le with data dependence information is speci�edas follows:LT Loopth lines linee V arth i linei j linej| {z }V arPair DT Flag n d1 d2 � � � dn| {z }�d :The description and de�nition of each of the above terms are described below. The symbolLT denotes one of the loop types classi�ed above. Loopth denotes the loop number arrangedin a given program, automatically produced by our compiler. The terms linestart and lineend,respectively, denote the start and end line numbers within the given source program. V arthdenotes the variable number in a given program, produced by our compiler. V arPair indi-cates the variable pair which is tested using dependence tests. For the �rst variable, i denotes- 9 -

the number of V arth which is stored in the i-th variable of the �le whose �lename has theextension "var". The line number of i-th V arth appearing in the source �le is denoted aslinei. For the second variable, j denotes the number of V arth. linej denotes the line numberof j-th V arth. The symbol DT represents the type of data dependence, whether ow, input,output dependence, and antidependence. The term Flag is a ag to indicate either the de-pendence vector or dependence direction for this data dependence relation. The dimensionof this dependence vector or direction is denoted by n. �d with n-tuple is either a dependencevector or direction depending on the ag Flag. If �d is a direction vector, each di, 1 � i � n,is one value depending on its direction speci�ed within Table 1. Hence, a data dependenceviewer is designed in this system to establish the data dependence graph of each loop andthen to display it to programmers based on all of the information in these two �les. Toillustrate, a snapshot of our developed data dependence viewer with a source loop, its datadependence graph, and its information concerning data dependence is shown in Figure 4.2. Program TransformationBy using the generated information about data dependence, we can apply to a programvarious compilation techniques integrated into the program transformation module so as toproduce a parallelized or vectorized code. Within the program transformation module, weimplement the submodules of program parallelization, data parallelization, and data and pro-gram parallelization. Within the program parallelization submodule, a compilation techniqueaimed at partitioning for linear array multicomputers has been designed (Sheu and Chen,1995). Within the data parallelization submodule, a compilation technique has been designed,aimed at communication-free partitioning without duplicate data during parallel execution(Chen and Sheu, 1994). Within the data and program parallelization submodule, a compila-tion technique has been designed, aimed at communication-free partitioning with duplicatedata during parallel execution (Chen and Sheu, 1994). The three compilation techniqueswere originally proposed and designed on distributed memory multicomputers to reduce thecommunication overhead. However, they can be also applied to shared memory multiproces-sors so as to eliminate as much as possible cache or local memory thrashing (Lu and Fang,1992).Loops are the most time-consuming parts and implicitly provide a large amount of par-allelism in a program. Therefore, we currently only consider loop transformations within theprogram transformation module. While a program is processed through the program trans-formation module, a DO loop can be translated into one of three types: DOSER, DOALL,and DOACR. The DOSER type, which is not changed in the original program, means thatthis loop via transformation is still performed sequentially. The DOALL type means thateach iteration of this loop via transformation is independently performed in parallel. TheDOACR type means that this loop can be performed in parallel but still needs communica-tion or synchronization primitives to keep the relationship of data dependence and preserve- 10 -

the semantics of the original program.For the program transformation module, an example shown below is given to illustratethe designed ow and the change of internal structures depending on di�erent compilationmethods. Through the compilation techniques of communication-free partitioning with orwithout duplicate data, the DO loop within the TEST program is translated into the follow-ing program segment with a parallel construct, DOALL, written in the form of FORTRAN:DOALL 10 I' = �3, 3DO 20 I = MAX(2, I'+2), MIN(5, I'+5)J = I � I'A(2�I,J) = C(I,J) � 7B(J,I+1) = A(2�I�2,J�1) + C(I�1,J�1)20 CONTINUE10 CONTINUEWithin our parallelizing compiler, both the tree structure (program representation) andthe symbol table are the heart or kernel. This is because all the information such as the orig-inal program semantics, the translated program representation, the mapped and scheduledprogram representation, etc., are included for the process of each module. While applyingany analysis or compilation technique, the tree structure and internal structure of the symboltable are adjusted. Each adjustment may cause a drop, insertion, or movement of internalstructures, for example, movement of basic blocks, insertion of new basic blocks, modi�cationof expressions, or insertion of new symbols. Therefore, the corresponding program represen-tation has to be modi�ed and translated into another tree structure. By means of the aboveprogram segmentation, an additional symbol, I', must be incorporated into the symbol table.Two induction variables, I and J, of DO constructs are changed to the new variable I' andthe original variable I, respectively. Their loop lower bounds and upper bounds are also mod-i�ed. An additional statement is appended to the original loop body. Hence, the programrepresentation is translated and is depicted in Figure 10. Depending on the di�erent com-pilation techniques within the program transformation module, the tree structure (programrepresentation) is, therefore, modi�ed and changed to form another tree structure.After transformation of a program, the most important work is scheduling of tasks for thetarget machine according to the type of parallel machine, the architecture, and the number ofprocessors. In the next section, we will describe the implementation techniques and variousmodules of the machine-dependent phase of this parallelizing compiler.V. Machine-Dependent Phase of the Parallelizing CompilerIn this section, the implementation of each module within the machine-dependent phaseof our parallelizing compiler is described, with respect to the machine architecture, topology,and size. - 11 -

1. Data Distribution and Program SchedulingThe data distribution and program scheduling module is described in this subsection. Forparallel machines, data distribution, program partitioning and scheduling signi�cantly deter-mine the execution behaviors and performance.Now, we will discuss the approaches to partitioning on parallel computers. Because wecurrently only consider the topology, mesh, for distributed memory multicomputers, programscheduling for the communication-free partitioning and projection methods is simple. Thecomplex and optimal assignment algorithms were presented in (Chen and Sheu, 1994) (Sheuand Chen, 1995). Generally speaking, the purpose of these strategies is to eliminate or reduceas much as possible interprocessor communication. The communication-free data allocationtechnique can totally eliminate interprocessor communication. Another strategy can reduceinterprocessor communication by allocating necessary data to the location where it is usedor involve only neighbor-to-neighbor communication. Hence, the methods we use can notonly reduce the communication overhead on distributed memory multicomputers, but alsoincrease the data locality and cache hit ratio on shared memory multiprocessors. Thus,these methods are suitable for the two categories of parallel computers, distributed memorymulticomputers and shared memory multiprocessors. It should be pointed out that, duringprogram scheduling on shared memory multiprocessors, we adapt static partitioning.When the process of compiling a sequential program into a parallel form, maintainedand represented in the program representation, has been completed, the program's parallelintermediate form will �nally be produced by the code generation module.2. Code GenerationIn this subsection, the code generation module for simulators of distributed and sharedmemory multiprocessors is described. By means of the intermediate parallel form, userscan easily understand the power of parallelism extraction and the capability of programtransformation.By using the program representation of a transformed program, we can translate thetransformed program into an intermediate code written in the C language. In addition tothe constructs supported by the original C language, we integrate the parallel constructs andsynchronization primitives shown in Table 2 into our speci�ed intermediate code for sharedmemory multiprocessors. Table 3 shows a list of supported message-passing functions in theC language for distributed memory multicomputers.For more details, readers can refer to several examples in references (Chu, 1993), (Ni,1993). In the following section, the simulators of parallel computers which simulate theabove mentioned intermediate parallel forms will be introduced.- 12 -

VI. SimulatorIn this section, the simulator of the target machine module for evaluating and measuringperformance during execution of a parallel program is speci�ed.A simulator of shared memory multiprocessors presented in (Chu, 1993) is �rst discussed.In this simulator, we integrate several parallel constructs and synchronization primitivesdepicted in Table 2 into the DLXsim (Hennessy and Patterson, 1990). The DLXsim is asimulator for DLX which has a theoretical load/store architecture and is derived from RISCarchitecture. There exists a C compiler supported by DLX for compiling a given programwith appropriate parallel constructs and synchronization primitives into DLX assembly code.After simulating a given intermediate code of shared memory multiprocessors, the executedresults include total execution cycles, processor utilization, the amount and cycle time ofcommunication, etc.The framework of the simulator of shared memory multiprocessors is described below.In designing it, many data structures are needed. The most important one is a tree whichis used to represent the relationship among processors and to capture the information andstatus while running a program. We model the execution ow of the program coded in theintermediate form for our simulator as follows. Each node in the tree indicates one processor.At the beginning, only one processor executes the program, so it is modeled as the rootnode in the tree. Once the processor deals with a DOALL(L; U; S) (or DOACR(L; U; S))construct, the statements between DOALL(L; U; S) and ENDDOALL() (or DOACR(L; U; S)and ENDDOACR()) will be executed in parallel by d(U �L+1)=Se processors. Hence, thered(U � L + 1)=Se nodes are generated as the children nodes of the root node. Then, theseprocessors begin to execute the statements between the two parallel constructs while theparent node plays two roles; one is the root node and another is then one of the children.Thus, each edge in the tree indicates the relation between two index instances (processors) inthe two contiguous parallel loop constructs (DOALL or DOACR). While processors executethe communication primitives, some information and the status up to that point includingthe total execution cycle time, the amount of synchronization, the synchronous cycle time,and so on, have to be recorded. If one parallel construct is met, the actions described abovewill be recursively applied to establish the tree. The detailed implementation can be foundin (Chu, 1993). A snapshot of the simulation results is shown in Figure 5. A shared memorymultiprocessor with 8 processors and the statistical results are shown in the table and in agraphic manner.Next, a simulator of distributed memory multicomputers presented in (Ni, 1993) will bediscussed. Because the simulator we have developed can simulate torus mesh architectures,all of the mesh, linear array, and ring topologies can be simulated. The overall schema of oursimulator is illustrated in Figure 11. An oblong shape represents a data structure or a storageunit that keeps a particular set of data. A rectangle represents a function, action, submodule,or manipulation which executes some sort of operation on a related data structure (oblongs).- 13 -

The rectangles with shadows represent software modules of the simulator. An arrow indicatesthe data ow and/or control ow among the modules of the data structures.The primary input of this simulator is a set of programs running on each PE. The assemblysource programs are assembled by the assembler in the preprocessing module. After that, theobject codes are pre-coded and linked to the message-passing supporting library to generatethe simulator-executable object codes. The object code loader loads the executable codesinto the object module (PE objects) and generates initial events for the event-driven engine.The object and event-driven engine modules perform the actual simulation tasks. The event-driven engine maintains the ordered event list data structure, from which the module picksout the current event for the object module and the output generation module. The event-driven engine also maintains a synchronizing object list which keeps a list of objects that needto be synchronized. When the object module receives a current event, it simulates the actionsof the activated objects. The states of objects are updated. New events are generated andsent to the event-driven engine, where the new events are scheduled for future simulation.In addition to the object module, the current events (behaviors) are sent to the outputgeneration module. The current event is �ltered by the event �lter of the output generationmodule to produce behavior records of the interested behaviors of the simulated system.The object statistic extractor generates statistical results from objects after the simulationis completed. The detailed implementation can be found in (Ni, 1993). A snapshot of asimulation of a matrix multiplication program on a 4� 4 torus is shown in Figure 6.Our designed simulators not only simulate a parallelized code, but also evaluate and mea-sure its execution performance. If the performance is not acceptable, the user can modify thesource program or apply other compilation techniques to produce more e�cient parallelizedcode.VII. ConclusionsWe have described the implementation and design issues of the parallel programmingenvironment UPPER, including the user-interface, the parallelizing compiler system withmachine-independent and machine-dependent phases, and the simulator. Playing the mostimportant role of communication between users and the environment is the user-interface.The machine-independent phase of the parallelizing compiler system deals with the prepro-cessing of a source program, dependence analysis, and our proposed compilation strategies.During the machine-dependent phase, we �rst deal with the mapping and the scheduling ofa transformed program onto the target machine speci�ed by the user. Then, the simulatorsof shared memory multiprocessors and distributed memory multicomputers measure the exe-cution performance of a resultant parallelized code. This environment enables programmersto easily design parallelized programs by means of interaction between the programmer andthis system.In order to implement our parallel programming environment, the following approaches- 14 -

to compilation and design aspects will be considered and adapted in the future. The �rst goalwill be to consider interprocedural analysis (Burke and Cytron, 1986) (Triolet et al., 1986)(Li and Yew, 1988). We will construct a call graph to directly explore the parallelism ofprocedure calls or functional parallelism in order to extract a large amount of parallelism ina program. Second, we will consider the model of several nested loops together in a program.For multiprocessor systems, we will design an approach which minimize parallel executiontime by analyzing data dependence and determining data layout. Third, due to the needto manage data and information, the design of an e�cient database system will become ourfocus. Finally, we will improve and enhance the applicability of user interface by adding anew graphical demonstration system and visualization system, and we will then integrateeach of these future works into UPPER so that it will have powerful compiling capability.ReferencesAllen, F., Burke, M., Charles, P., Cytron, R., and Ferrante, J. (1988). An overview ofthe PTRAN analysis system for multiprocessing. Journal of Parallel and DistributedComputing, 5(5):617{640.Amarasinghe, S. P. and Lam, M. S. (1993). Communication optimization and codegeneration for distributed memory machines. In Proceedings of the ACM SIGPLAN'93Conference on Programming Language Design and Implementation, pages 126{138.Anderson, J. M. and Lam, M. S. (1993). Global optimizations for parallelism and localityon scalable parallel machines. In Proceedings of the ACM SIGPLAN'93 Conference onProgramming Language Design and Implementation, pages 112{125.Banerjee, U. (1988). Dependence Analysis for Supercomputing. Kluwer AcademicPublishers, Norwell, Massachusetts.Burke, M. and Cytron, R. (1986). Interprocedural dependence analysis and paralleliza-tion. In Proceedings of the SIGPLAN'86 Symposium on Compiler Construction, pages162{175.Chen, T. S. and Sheu, J. P. (1994). Communication-free data allocation techniquesfor parallelizing compilers on multicomputers. IEEE Transactions on Parallel and Dis-tributed Systems, 5(9):924{938.Chu, C. C. (1993). A simulator of shared-memory multiprocessor systems for paralleliz-ing compilers. Master's thesis, Institute of Computer Science and Electrical Engineering,National Central University, Taiwan, R.O.C.- 15 -

Ferrante, J., Ottenstein, K. J., and Warren, J. (1987). The program dependence graphand its use in optimization. ACMTransactions on Programming Languages and Systems,9(3):319{349.Gannon, D., Jalby, W., and Gallivan, J. (1988). Strategies for cache and local memorymanagement by global program transformations. Journal of Parallel and DistributedComputing, 5(5):587{616.Gupta, M. and Banerjee, P. (1992). Demonstration of automatic data partitioningtechniques for parallelizing compilers on multicomputers. IEEE Transactions on Paralleland Distributed Systems, 3(2):179{193.Hennessy, J. L. and Patterson, D. A. (1990). Computer Architecture: A QuantitativeApproach. Morgan Kaufmann Publishers, Inc.Hiranandani, S., Kennedy, K., and Tseng, C. W. (1992). Compiling Fortran D forMIMD distributed-memory machines. Communications of the ACM, 35(8):66{80.Kennedy, K., McKinley, K. S., and Tseng, C. W. (1991). Interactive parallel pro-gramming using the ParaScope editor. IEEE Transactions on Parallel and DistributedSystems, 2(3):329{341.Koelbel, C. and Mehrotra, P. (1991). Compiling global name-space parallel loops fordistributed execution. IEEE Transactions on Parallel and Distributed Systems, 2(4):440{451.Koelbel, C., Mehrotra, P., and Rosendale, J. V. (1990). Supporting shared data struc-tures on distributed memory architectures. In Proceedings of ACM SIGPLAN Sympo-sium on Principles and Practice of Parallel Programming, pages 177{186.Li, J. and Chen, M. (1991). Compiling communication-e�cient programs for massivelyparallel machines. IEEE Transactions on Parallel and Distributed Systems, 2(3):361{376.Li, Z. and Yew, P. C. (1988). E�cient interprocedural analysis for program paralleliza-tion and restructuring. In Proceedings of ACM SIGPLAN'88 Parallel Programming:Experience with Applications, Languages and Systems, pages 85{99.Li, Z., Yew, P. C., and Zhu, C. Q. (1990). An e�cient data dependence analysisfor parallelizing compilers. IEEE Transactions on Parallel and Distributed Systems,1(1):26{34.Lu, M. and Fang, J. Z. (1992). A solution of the cache ping-pong problem in multipro-cessor systems. Journal of Parallel and Distributed Computing, 16:158{171.- 16 -

Ni, S. Y. (1993). A simulator of distributed-memory multicomputers for parallelizingcompilers. Master's thesis, Institute of Computer Science and Electrical Engineering,National Central University, Taiwan, R.O.C.Padua, D. A. and Wolfe, M. J. (1986). Advanced compiler optimizations for supercom-puters. Communications of the ACM, 29:1184{1201.Polychronopoulos, C. D., Girkar, M., Haghighat, M. R., Lee, C. L., Leung, B., andSchouten, D. (1989). Parafrase-2: An environment for parallelizing, partitioning, syn-chronizing, and scheduling programs on multiprocessors. In Proceedings of InternationalConference on Parallel Processing, volume II, pages 39{48.Pugh, W. (1992). A practical algorithm for exact array dependence analysis. Com-munications of the ACM, 35(8):102{114.Rogers, A. and Pingali, K. (1989). Process decomposition through locality of reference.In Proceedings of the ACM SIGPLAN'89 Conference on Programming Language Designand Implementation, pages 69{80.Sheu, J. P. and Chen, T. S. (1995). Partitioning and mapping of nested loops for lineararray multicomputers. The Journal of Supercomputing, 9:183{202.Su, E., Palermo, D. J., and Banerjee, P. (1993). Automating parallelization of regularcomputations for distributed-memory multicomputers in the PARADIGM compiler. InProceedings of International Conference on Parallel Processing, volume II, pages 30{38.Tjiang, S., Wolf, M., Lam, M., Pieper, K., and Hennessy, J. (1992). Integrating scalaroptimizations and parallelization. In Languages and Compilers for Parallel Computing,pages 137{151.Triolet, R., Irigoin, F., and Feautrier, P. (1986). Direct parallelization of call statements.In Proceedings of the SIGPLAN'86 Symposium on Compiler Construction, pages 176{185.Wolf, M. E. and Lam, M. S. (1991). A loop transformation theory and an algorithm tomaximize parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452{471.Wolfe, M. J. (1989). Optimizing Supercompilers for Supercomputers. London andCambridge, MA: Pitman and the MIT Press.Wolfe, M. J. (1991). The Tiny loop restructuring research tool. In Proceedings ofInternational Conference on Parallel Processing, volume II, pages 46{53.Wolfe, M. J. (1992). Triangular Banerjee's inequalities with directions. Technicalreport, Department of Computer Science and Engineering, Oregon Graduate Institute.- 17 -

Wolfe, M. J. and Banerjee, U. (1987). Data dependence and its application to parallelprocessing. International Journal of Parallel Programming, 16(2):137{178.Wolfe, M. J. and Tseng, C. W. (1992). The power test for data dependence. IEEETransactions on Parallel and Distributed Systems, 3(5):591{601.Zima, H. P., Bast, H.-J., and Gerndt, M. (1988). SUPERB: A tool for semi-automaticMIMD/SIMD parallelization. Parallel Computing, 6(1):1{18.Zima, H. P. and Chapman, B. (1991). Supercompilers for Parallel and Vector Computers.ACM Press, New York.

- 18 -

Appendix AIn this Appendix, we list all of the grammars written in the Backus-Naur Form (BNF)which we have used.<program-start> : <program-front> <statement-list> <program-end> j �<program-front> : <newline0> "PROGRAM" ID<program-end> : "END" <newline0><newline0> : <newline0> NLINE j �<statement-list> : <statement-list> NLINE <statement> j <statement><statement> : <var-declaration> j <do-stmt> j <if-stmt>j <assign-stmt> j �<var-declaration> : "INTEGER" <var1> j "REAL" <var1><var1> : <var1> "," <var2> j <var2><var2> : ID j ID "(" <exp> <exp1> ")"<do-stmt> : "DO" INTLIT <var> "=" <exp> "," <exp> <step><statement-list> INTLIT "CONTINUE"<step> : "," <exp> j �<if-stmt> : "IF" <exp> "THEN" <statement-list> <else-part>"ENDIF"<else-part> : "ELSE" <statement-list> j �<assign-stmt> : <var> "=" <exp> j <array-var> "=" <exp><exp> : <exp> ".EQ." <exp>j <exp> ".LT." <exp>j <exp> ".LE." <exp>j ".NOT." <exp>j <exp> ".GE." <exp>j <exp> ".GT." <exp>j <exp> ".AND." <exp>j <exp> ".OR." <exp>j "(" <exp> ")"j <exp> "+" <exp>j <exp> "�" <exp>j "�" <exp>j <exp> "�" <exp>j <exp> "=" <exp>j <exp> "��" <exp>j <exp> "MOD" <exp>j "MAX" "(" <exp> <exp2> ")"j "MIN" "(" <exp> <exp2> ")"j "SQRT" "(" <exp> ")"j "FLOOR" "(" <exp> ")"j "CEILING" "(" <exp> ")"j <array-var>j <var>j INTLITj FLOATLIT<array-var> : <var> "(" <exp> <exp1> ")"<var> : ID<exp1> : <exp1> "," <exp> j �- 19 -

<exp2> : <exp2> "," <exp> j �Note that the lower-case words between the symbols < and > are regarded as nonterminalsymbols; the upper-case words and the symbols between the symbols " and " are regardedas terminal symbols.ID : A variable name with a legal string.NLINE : A new line character.INTLIT : An integer number.FLOATLIT : A oating point number.� : An empty symbol.

- 20 -

Table 1: The direction and its corresponding value of data dependence in each dimension.direction < = > � � 6= �value 0 1 2 3 4 5 6
Table 2: The parallel constructs and synchronization primitives supported in the parallelintermediate code of shared memory multiprocessors.Parallel Constructs and The Description of Each Parallel Construct andSynchronization Primitives Synchronization Primitive.ParBegin() The respective prologue and epilogue of a loopParEnd() which is to be performed in parallel.DOALL(La; U b; Sc) The respective prologue and epilogue of a loopENDDOALL() without data dependence.DOACR(L; U; S) The respective prologue and epilogue of a loopENDDOACR() with data dependence.WAIT(from-node) While a processor performs this statement,it must wait for a signal from the from-nodeprocessor within DOACR loops.SIGNAL(to-node) While a processor performs this statement,it must send a signal to the to-nodeprocessor within DOACR loops.ENTRY() The entry and exit of a critical sectionEXIT() within DOACR loops.BARRIER() None of processors can perform the followingstatements until this statement within DOALLloops is performed.aAn expression of the lower bound in this loop.bAn expression of the upper bound in this loop.cAn expression of the step in this loop. - 21 -

Table 3: A list of the message-passing functions supported in the parallel intermediate codeof distributed memory multicomputers.Function Names and Arguments The Descriptions of Function ResultsAfter calling, r and c contain theGetNodeInfo(&r, &c, &mr, &mc) respective row and column number of thisPE. mr and mc contain the respectivetotal numbers of rows and columns in thismesh.Perform circuit routing from this PE to theCircuitStartup(r, c) PE at (r, c). The circuit will be built fromthis PE to the PE at (r, c).Send a message with size s at theSend(r, c, s, p, t) address p to PE (r, c). t is the typeof message used as a message ID.The action of Send(), but the circuit willSendNC(r, c, s, p, t) be not kept in the cache after the message issent.Send the message through link d. Links 0, 1, 2,SendDirection(d, s, p, t) and 3 are connected to the right, up, left, anddown neighboring PE, respectively.Receive a message and place it at address p.Receive(&r, &c, &s, p, &t) If this message can be accepted, the valuesof r, c, and t compared to the incomingmessage should be the same.Non-blocked version of Receive(). If theReceiveNB(&r, &c, &s, p, &t) function returns a non-zero value, a matchedmessage has been received.Broadcast the message at address p whoseBroadcast(s, p, t) size is s and type is t to all of other PEs.
- 22 -

Figure 1: The con�guration of the parallel programming environment.
- 23 -

Figure 2: A snapshot of the parallel programming environment.
- 24 -

Figure 3: A list of all the functions in the parallel programming environment.- 25 -

Figure 4: A snapshot of our developed data dependence viewer.
- 26 -

Figure 5: A snapshot of the simulation results of the shared memory multiprocessor simulator.

Figure 6: A snapshot of the simulation results of the distributed memory multicomputersimulator. - 27 -

Figure 7: Three types of constructions of basic blocks.
- 28 -

Figure 8: The program representation of the given segmentation code.
- 29 -

Figure 9: The graph view of the program representation of the TEST program.
- 30 -

Figure 10: The graph view of the program representation of the transformed program.
- 31 -

Figure 11: The overall schema of the simulator of distributed memory multicomputers.- 32 -
View publication stats

https://www.researchgate.net/publication/2424928

